Newcastle University
Browse
DATASET
2_TRIR_spectra.xlsx (271.95 kB)
DATASET
Bodipy_specechem.xlsx (64.92 kB)
DATASET
1_2_kinetics_esi.xlsx (41.32 kB)
TEXT
README_PCCP_TRIR.txt (4.11 kB)
DATASET
1_2_kinetics.xlsx (19.54 kB)
DATASET
Ground_state_IR.xlsx (102.81 kB)
DATASET
Presursor_specechem.xlsx (24.49 kB)
ARCHIVE
CSV.zip (264.73 kB)
DATASET
2_NiO_IR.xlsx (32.8 kB)
DATASET
1_TRIR_spectra.xlsx (391.98 kB)
1/0
10 files

Time-resolved Infrared Spectroscopy of P1 and P1-bodipy

dataset
posted on 2017-01-01, 00:00 authored by F Black, Elizabeth GibsonElizabeth Gibson
These time-resolved infrared (TRIR) absorption spectra were collected at the Ultra facility and the Rutherford Applelton Laboratory to determine the structure and lifetime of the intermediates formed on photoexcitation of two organic donor-π-acceptor dyes adsorbed to the surface of NiO. The donor and π-linker of both dyes is triphenylamine and thiophene but the acceptors differ, maleonitrile (1) and bodipy (2). Despite their structural similarities, dye 1 outperforms 2 significantly in devices. Strong transient bands in the fingerprint region (1 and 2) and nitrile region (2300-2000 cm–1) for 1 enabled us to monitor the structure of the excited states in solution or adsorbed on NiO (in the absence and presence of electrolyte) and the corresponding kinetics, which on a ps-ns timescale. The results are consistent with rapid (<1 ps) charge-transfer from NiO to the excited dye (1) to give exclusively the charge-separated state on the timescale of our measurements. Conversely, the TRIR experiments revealed that multiple species are present shortly after excitation of the bodipy chromophore in 2, which is electronically decoupled from the thiophene linker. In solution, excitation first populates the bodipy singlet excited state, followed by charge transfer from the triphenylamine to the bodipy. The presence and short lifetime (τ ≈ 30 ps) of the charge-transfer excited state when 2 is adsorbed on NiO (2|NiO) suggests that charge separation is slower and/or less efficient in 2|NiO than in 1|NiO. This is consistent with the difference in performance between the two dyes in dye-sensitized solar cells and photoelectrochemical water splitting devices.

History

Usage metrics

    Newcastle University

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC