The MUFFINS project aims to develop the next generation of pioneering technologies and cost-efficient tools for the safe, reliable and real-life designs of subsea systems (pipelines, risers, jumpers and manifolds) transporting multiphase hydrocarbon liquid-gas flows.
The proposed framework will specifically address fundamental and practical challenges in areas of internal multiphase flow-induced vibration (MFIV), in combination with external flow vortex-induced vibration (VIV), whose fatigue damage effects due to complicated fluid-structure interaction mechanisms can be catastrophic and result in costly production downtime. Nevertheless, reliable practical guidelines and systematic frameworks for the response, stress and fatigue assessment of subsea structures undergoing MFIV are lacking. Greater complexities and unknowns arise when designing these structures subject to combined MFIV-VIV.
Through an integrated programme combining modelling, simulation and experiment, high-fidelity three-dimensional computational fluid dynamics will be performed and a hierarchy of innovative and cost-efficient reduced-order models will be developed to capture vital multiple MFIV and VIV effects, providing significant insights into detailed flow features and fluid-structure coupling phenomena. Validation, verification, uncertainty and reliability analyses will be carried out by comparing numerical results with experimental tests and industrial data to improve confidence in identifying the likelihood of fatigue failure and safety risks. The project will minimise uncertainties in MFIV-VIV predictions associated with multi-scale multi-physics fluid-elastic solid interactions, ultimately delivering improved design optimisation and control of the most efficient multiphase flow features.