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Read Me 

In this data repository, the data for the work "Coherent and incoherent structures in fuzzy dark 

matter halos", published on MNRAS in 2023 (see arxiv:2211.02565 for preprint), are provided. 

To support the generality of our discussion, we do not only just provide the data to reproduce 

our figures but also append the data to generate figures, like Fig. 3 (a) and (b), Fig. 4 and Fig. 

7, for all of our merger simulations, which are 10 independent halos for each total mass, namely, 

the 30 points in this work are all accessible. In addition, the plotting commands are briefly 

addressed/appended for essential reproductions. 

  

Below, the mat files are marked in bold, and the relevant figures are marked with underlines. 

MATLAB commands are mentioned in italic format. The “ini” variable labels the simulation 

with a different initial configuration. Please note that such configurations are independent of 

different M (total mass). 

 

The listed mat files are given in the data repository with details addressed in this document for 

this work: 

mat file name Brief description page 

spe-M=100-ini=9-t=*.mat 

t=0, 1.5 and 8 

For t=8, there are further post processed profiles. 

See the following description for more detail. 

2 

PO_M=100-ini=9.mat The first 5 largest PO modes in fully 3D array form 2 

correlation_func_avg-

t=4.5-9.3625.mat 

and 

correlation_func_avg-t=8-

8.5.mat 

The spatial correlation function for the profiles 

averaged different time span for M=100, ini=9 data 

set. 

3 

M=*energy_evolution.mat 

the total energy and its decomposition into total 

kinetic, quantum pressure, compressible, 

incompressible and gravitational energies 

3 

M=*_collection.mat 
The spatially radial profiles discussed in the content 

are provided in detail. 
3 

PowerSpectrum_M=*.mat 
The momentum spectra discussed in the content are 

provided in detail. 
5 

M=100-ini=9-zeta.mat 
The zeta values as function of time in Fig. 6 (b) are 

provided. 
7 
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▪ spe-M=100-ini=9-t=*.mat series 
 

The wavefunctions for Fig. 2 (a)-(i) and (ii) are given in "spe-M=100-ini=9-t=0.mat" and 

"spe-M=100-ini=9-t=1.5.mat" with the variables listed below 

• x,y and z: the spatial grids in 1D array format. 

• ut: the wavefunction in the fully 3D array form. 

Additional variables are provided in spe-M=100-ini=9-t=8.mat, 

• ix_recen, iy_recen, iz_recen: the position index to recenter the spatial profile for the 

origin being the peak density location. 

• Vsq_incom: the absolute square value of the incompressible velocity field in the fully 

3D array form. 

By using volume rendering along 3 different directions (x, y and z axes) and plotting the iso 

density the plots in Fig. 2 (a) can be regenerated. 

 

In "spe-M=100-ini=9-t=8.mat", the full wavefunction, ut, and the absolute square value of the 

incompressible velocity field, Vsq_incom, are given together with the spatial coordinate, x, y 

and z, and the re-centred grid index which uses the peak density at the centre of the coordinate. 

By using the slice" and "isosurface in MATLAB, one can straightforwardly obtain Fig. 2 (a)-

(iii), Fig. 6 (a) and Fig. 7 (a).  

 

The volume rendering image, Fig. 1, contains both the information from “spe-M=100-ini=9-

t=8.mat” and these two different volume rendered images are blended by the Photoshop-like 

"screen" effect via the mathematic post-process, 1−(1−A)×(1−B), where A and B are the RGB 

values of volume rendered density and the absolute square of the incompressible velocity field. 

More detail can be referred to https://photoblogstop.com/photoshop/photoshop-blend-modes-

explained. The colour schemes for the density and the absolute square of the incompressible 

velocity field can be approached by "parula" and "hot" respectively (Very marginal fine-tuning 

of the colorbars are used in Fig. 1, so this fine detail is not given to simplify the document 

here.). 

 

 

▪ PO_M=100-ini=9.mat 
The first 3 Penrose-Onsager condensate modes are provided. Similar to the structure in spe-

M=100-ini=9-t*.mat series, this file contains 

• ew: the first 5 PO condensate number (divided by rho0=0.1) 

• den_cen_avg: the time-averaged density in a fully 3D array form. 

• uPO: the largest PO condensate mode in a fully 3D array form. 

• uPO2 and uPO3: the 2nd and 3rd PO condensate modes in a fully 3D array form. 

• x,y and z: the spatial grids in 1D array format. 

The slice profile in Fig. 3 (c) can be generated by 

figure, 

imagesc(x,y,log(abs(A(:,:,length(z)/2+1).^2))/log(10));  

axis equal 

caxis([-2 4.2816]) 

for A being uPO, uPO2 and uPO3. 

 

 

 

 

https://photoblogstop.com/photoshop/photoshop-blend-modes-explained
https://photoblogstop.com/photoshop/photoshop-blend-modes-explained
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▪ correlation_func_avg-t=* series 
 

correlation_func_avg-t=4.5-9.3625.mat and correlation_func_avg-t=8-8.5.mat contain 

• x,y and z: the spatial grids in 1D array format. 

• g1: the time averaged first-order correlation function in fully 3D array form. 

• g2: the time averaged second-order correlation function in fully 3D array form. 

• t_avg: the times considered in the time average. 

Fig. 3 (d) illustrates their sliced profiles across the origin with the following commands: 

figure, 

subplot(1,2,1) 

imagesc(x,y,real(g1(:,:,length(z)/2+1))); 

axis square 

 

subplot(1,2,2) 

imagesc(x,y,g2(:,:,length(z)/2+1)); 

axis square 

 

 

▪ M=*energy_evolution.mat 

 

In “M=*energy_evolution.mat”, the total energy and its decomposition into total kinetic, 

quantum pressure, compressible, incompressible and gravitational energies are described. Each 

of the variables is packed in cell form. Using A{ini} to read out the interest variable/evolution 

for A=A(t) being:  

• t_start: The only 1D array in these files provides the tentative “virialized” time of the 

system. 

• Eg: Gravitational energy.  

• Eke: Total kinetic energy containing quantum pressures and classical kinetic energies.              

• Eke_com: Compressible part of the classical kinetic energy. 

• Eke_incom: Incompressible part of the classical kinetic energy. 

• Eke_qf: Quantum pressure energy. 

• Etot: Total energy, which is roughly a constant, is the summation of Eke and Eg. 

• t_all: the time spans of the simulation. Each cell contains an array of time.            

The plotting command is straightforward by using plot(t,A) for the interested quantity A. 

 

 

▪ M=*_collection.mat series 
 

In the series of "M=*_collection.mat" with the details listed below, the data set for 

regenerating Fig. 2 (c) and (d), Fig. 3 (for the configuration ini=9 for M=100) and Fig. 5 (a). 

The variable listed below are included in this file set: 

Fixed parameters/variables: 

• rho0: the spatially averaged density value while the density profiles below are all scaled. 

• r: the radial coordinate 

Time-averaged results (10 realizations of each variable, each row corresponds to a different 

simulation from a different initial configuration.) 

• den_avg_r: radial profile of density, the origin of the axes is re-centred to the position 

of peak density. 
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• dden_avg_r: the corresponding standard deviation. 

• fch: the cored-halo fitting profile extracted from den_avg_r. 

• rc: the core-radius of the cored-halo fit. There are three columns. The first column is 

the most confidential value of the fit and the second and third are the 95% confidential 

lower and upper bounds of the fit. Each row of the array corresponds to the results of 

an ini-th simulation. 

• rt: An 1D array records the transition radius of the cored-halo fit for ini-th simulation.   

• denPO_r: radial profile of the Penrose-Onsager mode. 

• ddenPO_r: the standard deviation of the Penrose-Onsager mode. 

• conc_r: concentration parameter/phase-space density, equivalent to 

rho0*den_avg_r/Vabs_sq_r. 

• dconc_r: the standard deviation of the phase-space density. The fluctuation in Vabs_vsq 

is not considered. 

• G1_r: radial profile of the time-averaged first-order correlation function 

• dG1_r: the standard deviation of the azimuthal average of the first-order correlation 

function 

• G2_r: radial profile of the time-averaged second-order correlation function 

• dG2_r: the standard deviation of the azimuthal average of the second-order correlation 

function 

• Vabs_avg_r: radial profile of the absolute square of the incompressible velocity field. 

• dVabs_avg_r: the standard deviation of the azimuthal average of the absolute square of 

the incompressible velocity field. 

• ke_r: Radial profile of the total kinetic energy, containing quantum pressure, 

compressible and incompressible energy.  

• dke_r: The standard deviation of the total kinetic energy density, as a function of r. 

• ke_com_r: Radial profile of the compressible kinetic energy density. 

• dke_com_r: The standard deviation of the compressible kinetic energy density, as a 

function of r. 

• ke_incom_r: Radial profile of the incompressible kinetic energy density. 

• dke_incom_r: The standard deviation of the incompressible kinetic energy density, as a 

function of r. 

• ke_qf_r: Radial profile of the quantum pressure energy density. 

• dke_qf_r: The standard deviation of the quantum pressure energy density, as a function 

of r. 

By using  

plot(r,A)     or     errorbar(r,A,dA) 

for specific variables, one can obtain the radial profile of A (with errorbar if dA is available). 

 

These variables are cell arrays and each cell 

• t_all: the time spans of the simulation. Each cell contains an array of time. 

• den_rt_all: each cell contains the radial density profiles 𝜌/𝜌0  at a given time in the way 

den_rt_all{ini}=den(t,r) (2D array)for ini=1-10 labelling the different initial 

configurations. 

• Fin_Func: The core-halo fitting function extracted for the dynamical radial density 

profile. A cell in Fit_Func has two other cells, describing the fitting functions for the 

core and halo parts. One can use it together with rc_dync, rt_dync and rh_dync (listed 

below) to replot the core-halo fitting r_core = r(r<rt) 

• rc_dync: the core radius of the cored-halo fit for dynamical radial density profile at time 

t. The same as the rc, there are three columns for rc_dync{ini} correspond to the most 
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confidential and the 95% lower and upper bounds. The vertical index denotes the time 

index with one-to-one relation to t_all{ini}. 

• rt_dync: the transition radius of the core-halo fit for the dynamical radial density profile. 

Each rt_dync{ini} is an 1D array for the transition radius as a function of time. 

• rh_dync: The halo length scale of the core-halo fit for the dynamical radial density 

profile. The three-column structure is the same as the rc_dync. 

Combining the above variables, one can replot the dynamical density profile and the 

corresponding core-halo fit as a function of r, e.g. Fig. 5 (a), via 

ini = 9 

 

t_target = [6 7] 

 

den_rt = den_rt_all{ini}; 

rc_t = rc_dync{ini}; 

rh_t = rh_dync{ini}; 

rt_t = rt_dync{ini}; 

core_halo_func = Fit_Func{ini}; 

 

figure, 

for tt = 1 : length(t_target) 

it_target = find(t_all{ini}==t_target(tt)); 

r_core = rc_t(it_target,1); 

r_tran = rt_t(it_target); 

r_halo = rh_t(it_target,1); 

eval(['fc = ' core_halo_func{it_target,1}]); 

eval(['fh = ' core_halo_func{it_target,2}]); 

core_fit = fc(r,r_core); 

halo_fit = fh(r,r_halo); 

core_fit(r>r_tran) = 0; 

halo_fit(r<=r_tran) = 0; 

ch_fit = core_fit + halo_fit; 

subplot(1,length(t_target),tt); 

plot(r,den_rt(it_target,:),'-k','linewidth',2); 

hold on 

plot(r,ch_fit,'--m','linewidth',1);  

set(gca,'Xscale','log','Yscale','log'); 

title(['t=' num2str(t_all{ini}(it_target))]) 

xlabel('r/l_{ref}') 

ylabel('\rho/\rho_0') 

end 

 

 

 

▪ PowerSpectrum_M=*.mat series 
 

In "PowerSpectrum_M=*.mat", the spectra in the radial momentum are provided 

• kr: The array of radial momentum. 

• t_start: an array specifies the tentative ‘virialized’ time for a given simulation, 

said,  t_start(ini) for ini-th initial configuration. 

• t_all: the time spans of the simulation. Each cell contains an array of time. 
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• Delta_krt: The dynamical profile of the power spectrum of the full density field as a 

function of radial momentum, kr. The data here is in cell format for different 

simulations. Using Delta_krt{ini} gives the power spectrum as a function of time, t, and 

kr in the form of Delta(t,kr) (2D array). 

• Delta_sc_krt : The dynamical profile of the power spectrum of the over-density field, 

Eq. (40), as a function of radial momentum, kr. The data here is in cell format for 

different simulations. Using Delta_sc_krt{ini} will give the power spectrum as a 

function of time, t, and kr in the form of Delta_sc(t,kr) (2D array). 

• varepsilon_incom_krt: The dynamical profile of vortex-/incompressible energy 

spectrum at a different time for all 10 simulations for specific M. The data here is 

in cell format for different simulations. Using varepsilon_incom_krt {ini} gives the 

power spectrum as a function of time, t, and kr in the form of varepsilon_incom_krt 

(t,kr) (2D array). 

• k_peak_Delta_sc: The time-averaged peak moment of the over-density power spectrum, 

Delta_sc. 

• dk_peak_Delta_sc: The standard deviation of the peak location of the full power 

spectrum through time, after t_start(ini) for a given initial configuration. 

• k_peak_incom_avg: The time-averaged peak moment of the vortex-/incompressible-

energy spectrum, varepsilon_incom_krt  

• dk_peak_incom_avg: The standard deviation of the peak location of the vortex-

/incompressible-energy spectrum through time, after t_start(ini) for a given initial 

configuration. 

 

The combination of "M=100_collection.mat" and "PowerSpectrum_M=100.mat" for ini=9 

can generate Fig. 5. Similar to the plotting for radial density profiles,  

plot(kr,A)     or     errorbar(kr,A,dA) 

for specific variables, one can obtain the momentum spectrum A (with errorbar if dA is 

available). 

 

To generate figures like Fig. 7 (b) and (c) one can use  

ini = 4, % number of configuration: 1 - 10 

 

dV = (10/288)^3; % uni volume in the simulation to cover the Fourier factor 

 

t = t_all{ini}; 

it_avg = find(t==t_start(ini)); 

 

f = mean(varepsilon_incom_krt{ini}(it_avg:end,:),1)*dV^2; 

df = std(varepsilon_incom_krt{ini}(it_avg:end,:),0,1)*dV^2; 

figure(72) 

errorbar(kr,f,df) 

set(gca,'Xscale','log','Yscale','log') 

xlabel('$k_r (l_{ref}^{-1})$','interpreter','latex') 

ylabel('$\tilde{\epsilon}_\mathrm{ke}^i$','interpreter','latex') 

 

f = mean(Delta_sc_krt{ini}(it_avg:end,:),1)*dV^2; 

figure(73) 

plot(kr,f); 

set(gca,'Xscale','log','Yscale','lin') 

ylabel('$\Delta^2_{\delta}(k_r)$','interpreter','latex') 
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xlabel('$k_r (l_{ref}^{-1})$','interpreter','latex') 

 

For  the configuration number ("ini" in the plotting scripts) are ini=4 for M=50, ini=9 for 

M=100 and ini=3 for M=150 respectively in the main content. For Fig. 7 (d), one can refer to 

figure(75); 

hold on 

errorbar(k_peak_Delta_sc,k_peak_incom_avg,dk_peak_incom_avg,dk_peak_incom

_avg,dk_peak_Delta_sc,dk_peak_Delta_sc,'o','linewidth',2); 

or 

for jj = 1 : size(Delta_krt,2) 

t = t_all{jj}; 

it_avg = find(t==t_start(jj)); 

Delta = Delta_krt{jj}; 

Delta_sc = Delta_sc_krt{jj}; 

KE_incom = varepsilon_incom_krt{jj}; 

kmax_Delta_t = []; 

kmax_Delta_sc_t= []; 

kmax_KE_incom_t = []; 

for tt = 1 : length(t) 

[v_Delta_max,iDelta_max] = max(Delta(tt,:)); 

[v_Delta_sc_max,iDelta_sc_max] = max(Delta_sc(tt,:)); 

[v_KE_incom_max,iKE_incom_max] = max(KE_incom(tt,:));  

kmax_Delta_t(tt) = kr(iDelta_max); 

kmax_Delta_sc_t(tt) = kr(iDelta_sc_max); 

kmax_KE_incom_t(tt) = kr(iKE_incom_max); 

end 

kmax_Delta_avg(jj) = mean(kmax_Delta_t(it_avg:end)); 

dkmax_Delta_avg(jj) = std(kmax_Delta_t(it_avg:end)); 

kmax_Delta_sc_avg(jj) = mean(kmax_Delta_sc_t(it_avg:end)); 

dkmax_Delta_sc_avg(jj) = std(kmax_Delta_sc_t(it_avg:end)); 

kmax_KE_incom_avg(jj) = mean(kmax_KE_incom_t(it_avg:end)); 

dkmax_KE_incom_avg(jj) = std(kmax_KE_incom_t(it_avg:end)); 

end 

 

figure(74) 

errorbar(kmax_Delta_sc_avg,kmax_KE_incom_avg,dkmax_KE_incom_avg,dkmax

_KE_incom_avg,dkmax_Delta_sc_avg,dkmax_Delta_sc_avg,'o','linewidth',2); 

hold on 

and repeat the commands for different values of M. 

   

▪ M=100-ini=9-zeta.mat 
The zeta value, Eq. (36), is given in “M=100-ini=9-zeta.mat” containing: 

• t: the time sequence in 1D array form for t>=4\tau_ref. 

• Vsq_incom_rCt: the 2D array for the time evolution for zeta value at different x for 

each column. 

• rc_ratio: the value of x/rc for rc being the time-averaged one  

 

Fig. 6 (b) can be essentially reproduced by the following MATLAB commands, 

tt = find(t==4.5); 

rc_index = [1 4 10 33] 
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Colors = (colormap(parula(length(rc_index )+0))); 

Legend = {}; 

jj = 1; 

rc = 0.11; 

for kk = fliplr(rc_index) 

kk 

if kk == 2 

LW = 2 

elseif kk == 1 

LW = 3 

else 

LW = 2; 

end 

Legend{jj} = ['x=' num2str(rc_ratio(kk)) 'r_c']; 

figure(32); 

plot(t(1:size(Vsq_incom_rCt,1)),Vsq_incom_rCt(:,kk),'linewidth',2,'color',C

olors(jj,:)); 

hold on 

jj = jj + 1; 

end 

legend(Legend) 

 

 

 

 

 

 

 

 


