<u>Readme file for "Modelling of Lewis Number dependence of scalar dissipation rate transport for</u> <u>large eddy simulations of turbulent premixed combustion" by Y. Gao and N. Chakraborty</u>

The methodology adopted to generate the data is discussed in details in Section 2 and 3 of the paper (i.e. Mathematical Background and Numerical Implementation). Please refer to those sections of the paper and references therein.

The results corresponding to Figure 1 is kept in a sub-folder called 'Figure1'

- Description of 'Figure 1': It has all the source MATLAB files in *.fig format for Fig. 1 of the paper.
- Fig. 1 description: Distributions of \tilde{c} on $x_1 x_2$ mid-plane for $\Delta = 0.8\delta_{th}$ (1st column); 1.6 δ_{th} (2nd column); 2.8 δ_{th} (3rd column) for cases A-E (1st -5th row) when the statistics were extracted (i.e. $t = 1.75\alpha_{T0} / S_L^2$).
- Naming convention of the files in 'Figure 1': leanb where a=34,06,08,10,12 indicate global Lewis numbers Le = 0.34, 0.6, 0.8, 1.0 and 1.2 respectively; b=8,16,28 correspond to $\Delta/\delta_{th} = 0.8, 1.6$ and 2.8 respectively.

The results corresponding to Figure 2 is kept in a sub-folder called 'Figure 2'

- Description of 'Figure 2': It has all the source MATLAB files in *.fig format for Fig. 2 of the paper.
- Naming convention of the files in 'Figure 2': Figure 2.fig.

The results corresponding to Figure 3 is kept in a sub-folder called 'Figure 3'

- Description of 'Figure 3': It has all the source MATLAB files in *.fig format for Fig. 3 of the paper.
- Fig. 3 description: Variations of $J_{sg}^{+} = (\overline{\rho u_i N_c} \overline{\rho} \widetilde{u}_i \widetilde{N}_c) M_i \times \delta_{th} / \rho_0 S_L^2$ (------) conditionally averaged in bins of \widetilde{c} along with the predictions of eqs. 6i and 6ii with $\Phi' = 0.7$ (--------) and eq. 6i and 6ii with Φ' according to eq. 6iii (----) for $\Delta \approx 0.4 \delta_{th}$ (1st column), 1.6 δ_{th} (2nd column) and 2.8 δ_{th} (3rd column) in cases A-E (1st -5th row).
- Naming convention of the files in 'Figure 3': Leafluxnbr where a=34,06,08,10,12 indicate global Lewis numbers Le = 0.34, 0.6, 0.8, 1.0 and 1.2 respectively; b=4,16,28 correspond to $\Delta/\delta_{th} = 0.4, 1.6$ and 2.8 respectively.

The results corresponding to Figure 4 is kept in a sub-folder called 'Figure 4 '

- Description of 'Figure 4': It has all the source MATLAB files in *.fig format for Fig. 4 of the paper.
- Fig. 4 description: Variations of T_2 (-----) and $(T_2)_{sg}$ (-----) conditionally averaged in bins of
 - \widetilde{c} along with the predictions of eq.8 (----) for $\Delta \approx 0.4 \delta_{th}$ (1st column),

1.6 δ_{th} (2nd column) and 2.8 δ_{th} (3rd column) in cases A-E (1st -5th row). All the terms are normalised with respect to $\rho_0 S_L^2 / \delta_{th}^2$.

• Naming convention of the files in 'Figure 4': Le**a**_t2n**b**r where a=34,06,08,10,12 indicate global Lewis numbers Le = 0.34, 0.6, 0.8, 1.0 and 1.2 respectively; b=4,16,28 correspond to $\Delta/\delta_{th} = 0.4, 1.6$ and 2.8 respectively.

The results corresponding to Figure 5 is kept in a sub-folder called 'Figure 5 '

- Description of 'Figure 5': It has all the source MATLAB files in *.fig format for Fig. 5 of the paper.
- Fig. 5 description: Variations of T_3 (-----) and $(T_3)_{res}$ (-----) conditionally averaged in bins of \widetilde{C} along with the predictions of eqs.12i and 12iii (------) and eqs. 13i and 13ii (-----) for $\Delta \approx 0.4\delta_{th}$ (1st column), $\Delta \approx 1.6\delta_{th}$ (2nd column) and $\Delta \approx 2.8\delta_{th}$ (3rd column) in cases A-E (1st -5th row). All the terms are normalised with respect to $\rho_0 S_L^2 / \delta_{th}^2$.
- Naming convention of the files in 'Figure 5': Lea_t3nbr where a=34,06,08,10,12 indicate global Lewis numbers Le = 0.34, 0.6, 0.8, 1.0 and 1.2 respectively; b=4,16,28 correspond to $\Delta/\delta_{th} = 0.4, 1.6$ and 2.8 respectively.

The results corresponding to Figure 6 is kept in a sub-folder called 'Figure 6 '

- Description of 'Figure 6': It has all the source MATLAB files in *.fig format for Fig. 6 of the paper.
- Fig. 6 description: Variations of [T₄ + f(D) D₂] (-----) and [(T₄)_{sg} (D₂)_{sg} + {f(D)}_{sg}]
 (----) conditionally averaged in bins of C along with the predictions of eqs.15i and 15ii (
 -----) and eq. 16 (----) for Δ ≈ 0.4δ_{th} (1st column), 1.6δ_{th} (2nd column) and 2.8δ_{th} (3rd)
 - column) in cases A-E (1st -5th row). All the terms are normalised with respect to $\rho_0 S_L^2 / \delta_{th}^2$.
- Naming convention of the files in 'Figure 6': Lea_termsnbr where a=34,06,08,10,12 indicate global Lewis numbers Le = 0.34,0.6,0.8, 1.0 and 1.2 respectively; b=4,16,28 correspond to Δ/δ_{th} = 0.4, 1.6 and 2.8 respectively.

In order to get exact values from the plots one can follow one of the following methods:

- (i) Put the data cursor on a location on a lineplot which will give x and y coordinates of that location.
- (ii) Open the property editor of a line for the line plots -> Opt for more properties-> Xdata and Ydata will give all the necessary data for the plot.